Site Accessibility Statement
Wilfrid Laurier University Leaf
December 9, 2016
Canadian Excellence


Brian West

Analysis and design equations for phase matching using Bragg reflector waveguides

Brian R. West and A. Helmy

published: 2006 | Research publication | Toronto

In this paper we introduce and analyze a novel waveguide design to provide phase matching for nonlinear optical processes. Phase matching is achieved by designing the structure to guide the fundamental frequency by total internal reflection and the second harmonic (SH) frequency by transverse Bragg reflection. By forcing the SH mode to operate in the middle of the Bragg stop-band, we solve for the waveguide dimensions for arbitrary waveguide materials, given the material dispersion between the fundamental and SH frequencies. Using GaAs/AlGaAs as an example, we analytically investigate and quantify properties such as nonlinear coupling efficiency, bandwidth, tunability, and limitations due to dispersion. The technique shows tremendous promise when compared to alternate technologies, where it is particularly attractive as a material independent means to obtain ultra-low-loss nonlinear optical elements for monolithic integration with coherent light source and other active devices.

Download: PDF (821k)    PDFPaper10.pdf

revised Dec 15/08

View all Brian West documents